
Evaluation of folding integrals using Fourier-Bessel expansions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 7139

(http://iopscience.iop.org/0305-4470/27/21/029)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I .  Phys. A. Math. Gen. 27 (1994) 7139-7145. Printed in lhe UK 

Evaluation of folding integrals using Fourier-Bessel 
expansions 
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Received 27 May 1994, in final form 3 August 1994 

AbstracL The conditions are examined under which Fourier-Bessel expansions can be used 
correctly in ule evaluation of multiple folding integrals. A proper formulalion of the method is 
given. 

1. Introduction 

Many applications of physics require the evaluation of folding integrals. Typically, sources 
of two-body forces with a potential U ( s )  are given that have specified density distributions 
of limited radial extent, pi (r i ) .  i = 1,2, and one is faced with the task of calculating the 
potential energy V ( r )  of a given configuration of the sources 

V ( T )  = //  IT + 71 - ~ l )  p1(TdPz(rddrl  d n  (1) 

where T is the displacement of the source with density ~ I ( T I )  from that with density m(r2). 
The potential U($) may be, for example, the familiar Coulomb potential [I], an effective 
nucleon-nucleon interaction (as in the folding model of the nuclear optical potential 121). 
or the Uehling potential of the vacuum polarization in quantum electrodynamics [3]. 

The well known convolution theorem [4] reduces the evaluation of the six-dimensional 
folding integral (1) to the evaluation of the Fourier transforms of the density distributions 
Pi (Ti) 

fii(n) = / ~i(~i) exp(iq pi) d n  (2) 

and of the two-body potential U($) 

f i ( q )  = U(s)exp(iq. s ) d s  = 4n U(s)j&s)s2ds (3) s lm 
V ( T )  = - / O(q)  PI'W b ( d e x p ( - i q .  7 )  dq. 

and to the evaluation of a three-dimensional Fourier integral whose integrand involves the 
product of these Fourier transforms or their complex conjugates: 

(4) 
@7)3 

While it is assumed that the densities themselves are real, pi'(?-!) = pi ( r i ) ,  their Fourier 
lransforms are complex in general. Multipole expansions of the densities pi(r i )  further 
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reduce the three-dimensional Fourier transforms (2) and the three-dimensional Fourier 
integral (4) to multipole sums of one-dimensional integrals (see, for example, [I]). 

Much less well known and used is adiscrete version of this momentum-space procedure, 
based on a Fourier-Bessel expansion of the two-body potential U ( s )  and in which the 
evaluation of the Fourier integral (4) is replaced by a better-controlled and computationally 
more efficient summation of a series expansion. While the use of Fourier-Bessel expansions 
for the evaluation of folding integrals has been reported in the literature on several 
occasions [3,5-81. it appears that the method itself and the conditions under which it is 
applicable have not yet been properly investigated and formulated. The present paper is an 
attempt to remedy that. 

2. Fourier-Bessel expansions 

Let us consider a potential U(s)  that is a function of not only the modulus s = Is/, but 
also of the orientation of s with respect to some coordinate system. Thii would arise, for 
example, when the force acting between two particles is aifected by the presence of other 
particles, i.e. when three(or more)-body forces are significant. Or, U@) may be an extemal 
non-central 'one-body' potential, and one needs to calculate the one-body potential energy 
of particles that are located in U(s ) ,  apart from the potential energy arising from their 
two-body interactions. 

The potential U ( s )  is assumed to have a multipole expansion 

U ( S )  = x ~ ~ ~ ( s ) i ' f i ~ ( i + ) .  (5 )  
Jm 

General Fourier-Bessel expansions of the multipoles UJ,@) in terms of the spherical Bessel 
functions of order I ,  valid for s in a range s < R, 

have coefficients c p )  that are given by 

where q,?R are the positive roots of the equations 

aj j&) + b/xjl'(x) = 0 
where the prime denotes the first derivative and al and b/ are a ary constants, SL 
only to the obvious condition a: + 6: =. 0. The constants w,? in (7) are the normalil 
integrals of the orthogonal systems jl(q,?s), R = 1,2, . . . , 

bi = 0 (9) 

Equations (6H9) are obtained by reformulating the standard Fourier-Bessel expansions [9], 
which use the Bessel functions J&), in terms of the spherical Bessel functions j l ( x )  = 
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( I r / 2 r ) l 1 2 J l + p ( x ) .  A formal expression of the completeness of the systems of spherical 
Bessel functions that can be used in a Fourier-Bessel expansion of a function of s is a 
closure relation, valid within the sphere s = [SI < R: 

Using the Fourier-Bessel expansions (6), the potential (5) can be now written for Is1 < R 
as 

where qir) are vectors with discrete moduli Iq,?I = q:‘) and polar angles q:), and where 
the identity 

which follows from the expansion of exp(iq. s) in spherical harmonics, is employed. 

3. Folding integrals 

Let us generalize the double-folding integral (l), by using the potential U ( s )  instead of 
U(l4). to 

and assume that the densities pi (r i )  are negligible at distances I T <  I greater than some radii 
Ri. Such an assumption can be always made for densities that represent the distribution 
of charge, mass, etc. of particles or other well localized sources. In order to be able to 
formulate the use of Fourier-Bessel expansions in (13) correctly, the densities pi ( r i )  are 
cut off at the radii Ri: 

pi ( r i )  = 0 for lril > Ri. (14) 

By choosing the radii Ri sufficiently large. the cut-offs change the original densities to 
an arbitrarily small degree, but, strictly speaking, under consideration from now on is the 
folding integral (13), where pi(?-;) are the cut-off densities (14). 

Using in (13) the Fourier-Bessel expansion (1 1) of the potential U(T + T I  - TZ), with 
an expansion radius 

R = r,, + RI + Rz (15) 

an expansion of V ( T ) ,  valid for lrl < r-, is obtained: 

Here &(q!!)) are the Fourier transforms (2) of the densities pi ( r i ) ,  cut off as in (14), at 
points q = qf). The expansion (16) is valid for distances I T ]  < rmax because with such 
values of T the expansion of U(T + T I  - r 2 )  used is guaranteed to hold for all the values 
of the argument T + TI - r2 that contribute to (13). 
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In order to be able to perform the angular integrations in (16) analytically, the Fourier 
lransforms R(q) are expanded in multipoles: 

These multipoles can be expressed as 

Expanding the products of three spherical harmonics above in terms of single spherical 
harmonics and using the identity (12). equation (20) is written finally as 

where f = (U+1)'/2 etc, and the large parentheses denote 3- j coefficients: p' = ml -m2 and 
p = m + ml - mz. Equation (21) is a Fourier-Bessel expansion of the folding integral (13) 
with a general, non-spherical potential U ( s )  and densities p ; ( r i ) ,  holding within a sphere 
r = lrl c R - R1 - Rz, where R is the Fourier-Bessel expansion radius of U ( s ) .  

4. Special cases 

The general formula (21) simplifies when the potential U ( s )  = U(lsl) ,  i.e. when it is a 
function of the modulus of the dispacement s, as is the case with rotationally invariant two- 
body potentials. Then only the. l = 0 term in (21) contributes, and the positive roots q / ) R  
of (8) for 1 = 0 are simply nn, n = 1,2, . . . when bo = 0 in (8). or (n - a)., n = 1 ,2 , .  ., 
when q, = 0, with the normalization constants (9) I$) = R/[2(qi0)) ] in both these cases. 
Even if it could be under special circumstances advantageous not to take a0 or bo in (8) as 
0, those particular choices are adopted almost universally in the Fourier-Bessel expansions 

2 .  
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that are based on the spherical Bessel function jo(x). Assuming then a spherical potential 
U@), and taking 4:') = nn/R, the folding integral (13) is given for r = lrl < R by 

where 

An equally valid expansion is obtained by replacing the coefficients nn/R in (22) and (23) 
by (n  - f ) a / R .  

Further simplification ensues when only one of the densities, say pz(r2), is non- 
spherical. Then only the I I  = 0 term in (22) contributes, and (22) reduces to 

where 

is the Fourier transform of the spherical density p l ( r l ) .  Finally, the expansion formula for 
the fully spherically symmetric case, i.e. when the potential and both densities are spherically 
symmetric, is particularly simple 

where ,&(q) is the Fourier transform of the spherical density f i ( r 2 ) .  defined as in (25). 
Still more simplifications ensue when one of the density distributions is that of a point 

source, i.e. given by the Drac S-function. The double-folding integral (13) then reduces to 
a single-folding one. The expansion formulae obtained here cover the single-folding case 
simply by noting that the Fourier transform of the three-dimensional S-function is a constant 
equal to unity. If then p i ( ~ i )  = S(ri), i = 1 or 2, one would use 

(27) 

for the single-folding case in the expansion formulae (21). (24) and (26). Single folding with 
a non-spherical 'one-body' potential U ( s )  over the density ~ ~ ( r l ) ,  the expansion formula 
for which is qiven by equation (21) with equation (27), would qive the potential energy in 
the field U ( s )  of a particle with density distribution pl(r1). 

1 -(i) -  PI,^, (q)  = 6i(q)6i.06mjo = & j d m t o  4G 
i = 1 01 2 

5. conclusions 

The great advantage of using discrete Fourier-Bessel methods over the continuous Fourier- 
integral formulation is that the Fourier integral into which the folding integral can be 
transformed, and which invariably has to be evaluated numerically, is replaced by a series 
expansion in which, in principle, only the number of the terms included controls the degree 



1144 V Hnizdo 

of approximation to the exact value of the folding integral within a finite-radius sphere. In 
other words, a procedure of numerical integration is replaced by an analytical method. 

An essential aspect of the discrete Fourier-Bessel methods as they are formulated here is 
the use of finite-radius Fourier transforms for both the 'potential' and densities in question. 
As Fourier transforms usually have to be evaluated numerically, they are as such finite 
radius transforms de fucto. However, one should bear in mind a difference between the 
finite-radius transform of a potential that may have an infinite range, and that of a density 
that is assumed to be cut off at some finite radius. In the present formulation, the difference 
is that the latter transform is considered as the infiniteradius transform of a function that 
is defined to vanish beyond a certain finite radius. 

A comment is made on the Fourier-Bessel procedures as they have been used in 
practice for the evaluation of folding integrals. It may happen that the infinite-radius Fourier 
transform of a density that decays rapidly at large distances is available analytically, but its 
finite-radius transform is not. It is then computationally advantageous to use the infinite- 
radius Fourier transform instead of a nunlerically evaluated transform of that density cut 
off at a radius rl = R I ,  To approximate well the exact value of the folding integral within 
a sphere of radius r-, the Fourier-Bessel expansion radius R of the potential must be 
chosen sufficiently large so that the radius r,, = R - RI - Rz has the desired value, with 
R I  now a radius beyond which the density in question can be considered as negligible. The 
folding integral whose value is being approximated in such a procedure is one in which 
the full density, i.e. the density that is not cut off at any finite radius, appears. However, 
the degree of such an aproximation is governed not only by the number of terms in the 
Fourier-Bessel expansion, but also, in a less controllable manner, by the choice of the value 
for R I ,  which, for a given value of R, affects the value of rm, While it may be argued 
that, snictly speaking, a procedure like that is no longer a rigorous analytical method, in 
practice it yields very accurate results with densities that are used to model the distribution 
of physical attributes of particles (see, for example, [SI). Such densities decay at large 
distances exponentially, and thus the choice of the radius RI beyond which they can be 
regarded as vanishing presents no practical difficulty. 

In closing, this point is illustrated by the concrete example of a Yukawa potential 

e - p  
U ( s )  = -. 

S 

The Coulomb potential l/s can be treated as the special case f i  = 0 of the Yukawa potential. 
The coefficients (23) of the Fourier-Bessel expansion of U ( s )  are then 

The Fourier transform (25) with RI + 00 of a Fermi density m(r), normalized to unit 
volume. 

I po = 2 [I, (+(;) 3 . 2 0  -jJ-l)n- e-"e/o 

n3 "=I  4ac3 
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is given by [ 11 
m 

,jF(q) =4npo -((tcoshrrqasinqc-qccosqc) -2a3x(-I)" [ ;3 *=l (n2 + azq*)* 

nqa 
sinhnqa' 

t =  . 

The Fermi density is often used to model the distribution of mass and charge of particles; the 
uniform density with radius c is obtained as the limit a + 0. A Fourier-Bessel expansion 
of the Coulomb potential due to two extended charge distributions described by the Fermi 
densities (30) is then given by equation (26), and equations (29) (with p = 0) and (31) for 
c. and B(nn/R) ,  respectively. Using doubleprecision (8-byte) arithmetic and the values 
c, = 3, a, = 0.5, cz = 5 and a2 = 0.5 fm for the parameters of the two Fermi densities, 
which are typical for the charge distributions of light- and medium-mass atomic nuclei, an 
expansion radius R of about 28 fm and 27 terms in the expansion (26), out of which only 
the odd ones happen to be non-zero, are needed to obtain the Coulomb potential to six-digit 
accuracy in the range 0.1 c r c 15 fm. For ten-digit accuracy in the same range, an 
expansion radius of about 35 fm is required and the number of terms increases to 63, again 
including the zero-value terms. This was checked by recalculating this expansion using an 
extended, 16-byte precision arithmetic. 
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